Communication for maths

On the formal presentation of the binomial theorem

Correct use of symbols

 Use the equal sign "=" and the ellipsis sign "..." or the approximately equals sign "≈" appropriately

$$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x + \frac{\frac{1}{2}(-\frac{1}{2})}{2!}x^{\frac{1}{2}}$$
 No

Correct use of symbols

 Use the equal sign "=" and the ellipsis sign "..." or the approximately equals sign "≈" appropriately

Use the method stated

Using the binomial theorem expand $(1 + x)^4$

 $(1+x)^{4} = \binom{4}{0} + \binom{4}{1}x + \binom{4}{2}x^{2} + \binom{4}{3}x^{3} + \binom{4}{4}x^{4}$

or

Use the method stated

Using Pascal's triangle expand $(1 + x)^4$

Power of Binomial tely	•	Coef	hien	5			
0 :			(
1 :		1		1			
2 :	1		z		1		
				•			
3: 1		3		3		1	
4: 1	4		6		4		1
· /1+×)4 -	(-	+ [, \		× ² -	4	<i>+</i> ~	.4

No free-standing expressions

Expand (1+x) 2 up to The

bern in x2.

Solution :

 $1 + \frac{1}{2} \times + \frac{1}{2} \frac{(1 - 1)}{21} \times \frac{1}{2}$

 $\frac{1+\frac{x}{2}-\frac{1}{p}x^{2}}{\frac{1}{p}x^{2}}$

Justification Expanding (1-x) 2 upto, and including, the term x 3, find JZ to Zd.p. Solution: $(1-x)^{k} = 1 - \frac{1}{2}x + \frac{k(1k-1)}{21}x + \frac{k(1k-1)(1k-2)}{21}x$ LHS: when x = 0.02, (1-0.02) = 7 52 How so? Show steps

Justification Expanding (1-x) 2 up to, and including, the term x 3, find JZ to Zd.p. Solution: $(1-x)^{k} = 1 - \frac{1}{2}x + \frac{\binom{1}{2}\binom{1}{2}-1}{2!} + \frac{\binom{1}{2}\binom{1}{2}-1}{2!} + \frac{\binom{1}{2}\binom{1}{2}-1}{2!} + \frac{\binom{1}{2}\binom{1}{2}}{2!} + \frac{\binom{1}{2}\binom{1}{2}\binom{1}{2}}{2!} + \frac{\binom{1}{2}\binom{1}{2}\binom{1}{2}}{2!} + \frac{\binom{1}{2}\binom{1}{2}\binom{1}{2}}{2!} + \frac{\binom{1}{2}\binom{1}{2}}{2!} + \binom{1}{2}\binom{1}{2}}{2!} + \binom{1}{2}\binom{1}{2}$ LHS: when x = 0.02 the term (1-0.02)" = (0.98)" $= \sqrt{98} = \sqrt{49 \times 2} = \frac{7}{10} \sqrt{2}$

Justification

RHS: when X = 0.02 we have $\frac{1-\frac{1}{2}x-\frac{1}{8}x^2-\frac{3}{68}x^3}{68}=0.9899495$

How so? Show steps

Justification

RHS ! when X = 0.02 we have $\frac{1-\frac{1}{2}(0.02)-\frac{1}{8}(0.02)^2-\frac{3}{2}(0.02)^2-\frac{3}{2}(0.02)^2-\frac{1}{2}(0.$ = 0.9899495Yes

Justification

Or

Yes $\begin{cases} let g(x) = 1 - \frac{1}{2}x - \frac{1}{8}x^2 - \frac{3}{48}x^2 \\ \vdots g(0.02) = 0.9899495 \end{cases}$

Justification

Justification steps demonstrate your mathematical understanding of why a future step is what it is.

Exact versus approximate values

- Exact value: $\sqrt{2}$, 2π , ...
- Approximate values: 1.41 to 2 d.p.; 6.283 to 3 d.p.
- Decimal place accuracy:
 - If a final answer is required to 6 d.p. then work to at least 7 d.p. throughout the whole of the solution.
 - Only present your final answer to 6 d.p. not any intermediate results.

Example:

Expanding $(1 + 3x)^{1/2}$ by the binomial theorem, up to and including the term in x^3 , find $\sqrt{7}$ to 5 d.p.

Answer

Note that the correct answer is $\sqrt{7} \approx 2.64577$

Solution

See next slide. There are two presentation errors in the solution below, one relating to decimal places. Can you find the other error?

Solution: Given f(x) = (1+3x) 2 we have \$ (0.04) = (1+3'(0.06))2 $= \frac{\sqrt{2}}{\sqrt{7}} = \frac{2}{\sqrt{7}} \sqrt{7}$ $\frac{Al_{40}}{2} \left\{ (x) \stackrel{n}{=} 1 + \frac{3}{2} \times + \frac{3h(32-1)}{21} \times \frac{2}{21} \right\}$ $+\frac{3}{2}(3_{h}-1)(3_{h}-2) \times \frac{3}{21}$ $\frac{2}{2}$ 1 + $\frac{3}{2}$ x + $\frac{9}{4}$ x² + $\frac{17}{11}$ x³ : flo.04)~ 1.0583 V7 ~ 5 (1.0583) ~ 7.64575 So

Align your equals signs

The Binomial term $(1 - 0.02)^{k} = (0.98)^{k}$ DO Jz

Align your equals signs

The Binomial term $(1 - 0.02)^{k} = [0.98]^{k}$ 98 100 DO Not aligned or Z correctly spaced

Do not write in columns

[HS: When x = 0.02 we have (1-0.02)^{1/2} = (0.48)^{1/2} For RHS we have 1-1x-1x²-3x² $= (98)^{2}$ $\frac{2}{-1} \frac{1}{2} \frac{0.02}{8} \frac{1}{-3} \frac{1}{10.02} \frac{1}{3}$ = (49x2 = 7 52 ~ 1-0.01-0.000005 - 0. 200000 5

Example 1

Consider the following question

Let

$$(a + bx)^n = C_n x^n + C_{n-1} x^{n-1} + \dots + C_1 x + C_0.$$

Given $(3 + bx)^n$ find the possible values of b and n when

 $C_0 = 243$ and $C_4 = 1280/2187$.

Let us now study the solution handed out to identify what makes this solution incomplete.

Exercise 1

Write a correct solution to the following problem

Find the coefficient of x^{115} in the expansion of

$$\left(4x^4-\frac{5}{x^3}\right)^{55}.$$

Write your answer in terms of factorials, and powers of 2 and 5.

Presentation

Reminder

- The above slides refer to only a few of the aspects of mathematical presentation.
- Refer to previous slides for all other aspects of mathematical presentation in order to give a full and proper solution to a problem.

Presentation

Polynomial terminology

• What is the basic polynomial vocabulary?

$$y = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0.$$

Leading term	Leading coefficient	Constant term	Coefficient of the x ³ term
Fourth term	Approximately equal to	Expanding up to the x^3 term	(x – 1) is a factor of
Factorising	The fourth term	To factorise / factorising	To expand / expanding

Polynomial phrasing examples

- See handout
- *Dividing:* 6 ÷ 3
 - "6 divides 3" or "3 divides 6"?
 - "6 is divided by 3" or "3 is divided by 6"?
- Equation vs inequality
 - -3x + 1 = 2
 - -3x + 1 > 2
 - -3x + 1

General vocabulary

• Linking terms or phrases still apply:

Hence	Therefore	So	
Implies	Simplifying (we get)	Factorising (we obtain)	
Dividing by (we get)	Multiplying both sides by	Comparing left and right hand sides	
Substituting we get Given that		We see that	

General vocabulary

• Linking terms or phrases still apply:

For all	There exists	Such that	
The value	Satisfies	The exact value of	
The approximate value of to 2 decimal places	Because (of)	Since	
We have	It follows that	Let	