Communication for maths

On the formal presentation of the binomial theorem

Focusing on the binomial theorem.

Correct use of symbols

- Use the equal sign "=" and the ellipsis sign "..." or the approximately equals sign " \approx " appropriately

$$
(1+x)^{1 / 2}=1+\frac{1}{2} x+\frac{k(-1 /)}{2!} x^{2}
$$

No

Focusing on the binomial theorem.

Correct use of symbols

- Use the equal sign "=" and the ellipsis sign "..." or the approximately equals sign " \approx " appropriately

$$
\begin{equation*}
(1+x)^{1 / 2}=1+\frac{1}{2} x+\frac{k(-1 / n)}{2!} x^{2} \tag{No}
\end{equation*}
$$

$$
(1+x)^{1 / 2}=1+\frac{1}{2} x+\frac{k(-1 /)}{2!} x^{2}+\cdots \text { Yes }
$$

$$
(1+x)^{\frac{1}{2}} \simeq 1+\frac{1}{2} x+\frac{k(-\xi)}{2!} x^{2}
$$

Focusing on the binomial theorem.

Use the method stated
Using the binomial theorem expand $(1+x)^{4}$

$$
(1+x)^{4}=\binom{4}{0}+\binom{4}{1} x+\binom{4}{2} x^{2}+\binom{4}{3} x^{3}+\binom{4}{4} x^{4}
$$

or

$$
(1+x)^{4}=1+4 x+\frac{4(3)}{2!} x^{2}+\frac{4(3)(2)}{3!} x^{3}+\frac{4(3)(2)(1)}{4!} x^{4}
$$

Focusing on the binomial theorem.

Use the method stated

Using Pascal's Prand coefficewt triangle expand $(1+x)^{4}$

$0:$		1				
1	$:$		1		1	
2	$:$	1		2		1
$3:$	1	3		3	1	
$4:$	1	4	6		4	1

$\therefore(1+x)^{4}=1+4 x+6 x^{2}+4 x^{3}+x^{4}$

Focusing on the binomial theorem.

No free-standing expressions
Expand $(1+x)^{1 / 2}$ op to the teRm in x^{2}.

Solution:

$$
\begin{aligned}
& 1+\frac{1}{2} x+\frac{\frac{1}{2}(k-1)}{2!} x^{2} \\
& 1+\frac{x}{2}-\frac{1}{8} x^{2}
\end{aligned}
$$

Focusing on the binomial theorem.

Justification
Expanding $(1-x)^{1 / 2}$ upto, and including, the teem x^{3},
find $\sqrt{2}$ to $2 d \cdot p$.
Solution: $\quad(1-x)^{1 / 2}=1-\frac{1}{2} x+\frac{12(1 / 2-1)}{2!} x^{2}+\frac{1 / 2(1 /-1)(1 n-2)}{3!} x^{3}$
LHS: when $x=0.02,(1-0.02)^{1 / 2}=\frac{7}{10} \sqrt{2}$

How so? Show steps

Focusing on the binomial theorem.

Justification
Expanding $(1-x)^{1 / 2}$ pto, and including, the teem x^{3},
find $\sqrt{2}$ to $2 d \cdot p$.
Solution: $\quad(1-x)^{1 / 2}=1-\frac{1}{2} x+\frac{1 /(1 / 2-1)}{2!} x^{2}+\frac{1 / 2(1 / 2-1)(1 / 2-2)}{3!} x^{3}$
LHS: when $x=0.02$
the term $(1-0.02)^{1 / 2}=(0.48)^{1 / 2}$

$$
=\sqrt{\frac{98}{100}}=\sqrt{\frac{49 \times 2}{100}}=\frac{7}{10} \sqrt{2}
$$

Focusing on the binomial theorem.

Justification
RHS: when $x=0.02$ we have

$$
1-\frac{1}{2} x-\frac{1}{8} x^{2}-\frac{3}{48} x^{3}=0.9899495
$$

Focusing on the binomial theorem.

Justification

RHS: when $x=0.02$ we have

$$
\begin{aligned}
1-\frac{1}{2}(0.02)-\frac{1}{8}(0.02)^{2}-\frac{3}{48}(0.02)^{3} & \simeq 1-0.01-0.000005-0.0000005 \\
& =0.9899495
\end{aligned}
$$

Yes

Focusing on the binomial theorem.

Justification
Or

$$
\text { Yes }\left\{\begin{array}{l}
\text { let } g(x)=1-\frac{1}{2} x-\frac{1}{8} x^{2}-\frac{3}{48} x^{3} \\
\therefore g(0.02)=0.9899495
\end{array}\right.
$$

Focusing on the binomial theorem.

Justification

Justification steps demonstrate your mathematical understanding of why a future step is what it is.

Focusing on the binomial theorem.

- Exact versus approximate values
- Exact value: $\sqrt{ } 2,2 \pi, \ldots$
- Approximate values: 1.41 to 2 d.p.; 6.283 to 3 d.p.
- Decimal place accuracy:
- If a final answer is required to 6 d.p. then work to at least 7 d.p. throughout the whole of the solution.
- Only present your final answer to 6 d.p. not any intermediate results.

Focusing on the binomial theorem.

Example:

Expanding $(1+3 x)^{1 / 2}$ by the binomial theorem, up to and including the term in x^{3}, find $\sqrt{ } 7$ to 5 d.p.

Answer
Note that the correct answer is $\sqrt{ } 7 \approx 2.64577$

Solution

See next slide. There are two presentation errors in the solution below, one relating to decimal places. Can you find the other error?

Solution: Giver $f(x)=(1+3 x)^{1 / 2}$

$$
\text { we have } \begin{aligned}
f(0.04) & =\left(1+3^{1}(0.04)\right)^{1 / 2} \\
& =\frac{\sqrt{28}}{5}=\frac{2}{5} \sqrt{7} .
\end{aligned}
$$

$$
\begin{aligned}
\text { Also } \quad f(x) & \simeq 1+\frac{\frac{3}{2} x}{}+\frac{\frac{3 / 2(3 / 2-1)}{2!} x^{2}}{}+\frac{3 / 2(3 / 2-1)(3 / 2-2)}{3!} x^{3} \\
& \simeq 1+\frac{3}{2} x+\frac{9}{6} x^{2}+\frac{27}{16} x^{3} \\
\therefore & f(0.04)
\end{aligned}
$$

Focusing on the binomial theorem.

Align your equals signs
The Binomial term

$$
\begin{aligned}
(1-0.02)^{1 / 2} & =(0.98)^{1 / 2} \\
& =\sqrt{\frac{98}{100}} \quad=\sqrt{\frac{49 \times 2^{2}}{100}} \\
& =\frac{7}{10} \sqrt{2}
\end{aligned}
$$

Focusing on the binomial theorem.

Align your equals signs
The Binomial term

Not aligned or correctly spaced

$$
\begin{aligned}
& (1-0.02)^{1 / 2}=(0.98)^{1 / 2} \\
& =\sqrt{\frac{98}{100}}=\sqrt{\frac{49 \times^{2}}{100}} \\
& \longrightarrow=\frac{7}{10} \sqrt{2}
\end{aligned}
$$

Focusing on the binomial theorem.

Do not write in columns

LHS: When $x=0.0^{2}$
we have
For R Hs we have

$$
\begin{array}{rlrl}
(1-0.02)^{1 / 2} & =(0.48)^{1 / 2} & 1-\frac{1}{2} x-\frac{1}{8} x^{2}-\frac{3}{48} x^{3} \\
& =\left(\frac{98}{100}\right)^{1 / 2} & \simeq 1-\frac{1}{2}(0.02) \\
& =\left(\frac{49 \times 2}{100}\right)^{1 / 2} & -\frac{1}{8}(0.02)^{2} \\
& =\frac{7}{10} \sqrt{2} & -\frac{3}{48}(0.02)^{3} \\
& & 1-0.01-0.000005 \\
& & -0.0000005
\end{array}
$$

Example 1

Consider the following question

Let

$$
(a+b x)^{n}=C_{n} x^{n}+C_{n-1} x^{n-1}+\cdots+C_{1} x+C_{0} .
$$

Given $(3+b x)^{n}$ find the possible values of b and n when
$C_{0}=243$ and $C_{4}=1280 / 2187$.
Let us now study the solution handed out to identify what makes this solution incomplete.

Exercise 1

Write a correct solution to the following problem

Find the coefficient of x^{115} in the expansion of

$$
\left(4 x^{4}-\frac{5}{x^{3}}\right)^{55}
$$

Write your answer in terms of factorials, and powers of 2 and 5 .

Presentation

Reminder

- The above slides refer to only a few of the aspects of mathematical presentation.
- Refer to previous slides for all other aspects of mathematical presentation in order to give a full and proper solution to a problem.

Presentation

 Appendix

Polynomial terminology

-What is the basic polynomial vocabulary?

$$
y=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

Leading term	Leading coefficient	Constant term	Coefficient of the x^{3} term
Fourth term	Approximately equal to	Expanding up to the x^{3} term	$(x-1)$ is a factor of
Factorising	The fourth term	To factorise / factorising	To expand / expanding

Polynomial phrasing examples

- See handout
- Dividing: $6 \div 3$
- "6 divides 3" or "3 divides 6"?
- "6 is divided by 3" or "3 is divided by 6"?
- Equation vs inequality
$-3 x+1=2$
$-3 x+1>2$
$-3 x+1$

General vocabulary

- Linking terms or phrases still apply:

Hence	Therefore	So
Implies	Simplifying (we get)	Factorising (we obtain)
Dividing by ... (we get)	Multiplying both sides by ...	Comparing left and right hand sides
Substituting ... we get ...	Given that ...	We see that ...

General vocabulary

- Linking terms or phrases still apply:

For all ...	There exists ...	Such that ...
The value ...	Satisfies ...	The exact value of ...
The approximate value of \ldots to 2 decimal places	Because (of) ...	Since ...
We have ...	It follows that \ldots	Let \ldots

